I’ve been fascinated by Delta-type robots for a few years. I first saw one at the Java One conference around 2006. One of the research groups at Sun Labs bought one and ran it using real-time Java. This particular Delta was a huge machine about the size of a refrigerator and designed for use as a factory robot for picking and sorting parts. The engineers at Sun re-purposed it for drawing portraits. They designed an application in Java that could take a photograph of a person, turn that image into vectors and then control the robot to draw that portrait on a piece of paper. Was a pretty nifty demo!
The basic design of a Delta is pretty straightforward. There are three levers or arms each controlled by a motor. The end of each arm has two parallel struts mounted on ball joints. The other ends of the struts all converge onto a end-effector. The dual struts create adjusting parallelograms out of each lower arm section. As a result, the end effector stays level with the bottom surface, yet allows the robot to move the effector in any X, Y and Z direction. Also a properly designed delta can move extremely fast.
My friend @Spetku likes to build her own Deltas which got me interested in taking a shot at building my own. Here is some video of her delta in action:
Spetku was looking for better ways to 3D print the pieces and was pointing out to me that one of the most expensive components of the Delta were the ball joints. Which got me thinking…. What if you could snap cheap ball bearings into 3D printed parts. Would they have enough strength to not fly apart?
Spetku bought a bag of 250 ball bearings at McMaster-Carr and gave me a few. I printed a few experimental joints to see how they might work (acutally these are Spekus joints since I seem to be pretty bad at taking picture of my own stuff, but you get the point):
They worked rather well. So I began designing my Delta using viaCAD, an inexpensive AutoCAD clone. After a few weeks of trial and error, my delta parts came together. You can see in the photos below, the arms, struts and the end effector, where all the struts converge.
My next post will show how I made a frame to hold the delta and eventually drive it with some servos.